Woodlands.co.uk

Blog

Plastics and tree guards

Plastics and tree guards

by The blog at woodlands.co.uk, 27 October, 2023, 1 comments

Plastic is a problem, plastic is universal.  A class from Ramsbury Primary School went on a walk round their village, looking for signs of plastic pollution. When they looked in the hedgerows (lining the paths and fields), they found old plastic tree guards (and hedge guards).  Some were breaking up into pieces, some growing growing into the bark of the trees.  In addition, there were plastic bottles, face masks, dog poo bags, sweet wrappers, plastic ropes, plastic bags, and plastic wrappers from hay bales. Plastic  litters our world.  Each year, hundreds of million tonnes are produced. It is used but often it is not recycled - it is discarded.  It litters the land, rivers and oceans.  It is now almost impossible to walk in the countryside or on a beach without encountering plastic in one form or another.  Discarded plastic can kill or injure.  Mammals, reptiles, birds can be harmed through eating plastic or becoming entangled in it. Plastics are made up of repeating units (monomers) that join together to form long chains (polymers). There are six major polymer types, PET, HDPE, PVC, LDPE, PP and PS. Many are derived from petrochemicals.  Additives are incorporated into plastics and these can gradually leach back out either during normal use, or when in landfills, or following improper disposal in the environment.  Whilst plastics serve many different functions, their makeup means that they do not easily break down, they persist.  Consequently, a lot of plastic goes to landfill or it may be burnt (to generate energy) - which in turn can release greenhouse gases and pollutants.  Ideally plastics would be reused, like glass bottles were recycled in the dairy industry for over a century. Polyethylene is used widely for plastic bottles and food packaging, PVC is used to make pipes (for water / sewage), coating for electrical cables, uPVC windows and fascia boards. Recycled PVC can be used to make certain types of tree guards, for example :Spiral guards.  Such guards offer protection to young trees and hedgerow so that they can establish themselves, avoiding being chomped by rabbits, deer or sheep.  The guards also offer a micro-climate that helps growth. UV stabilised polyethylene is used to make netting / mesh to protect young trees. [caption id="attachment_34477" align="alignright" width="300"] Tree guards, to protect young trees on moorland[/caption] Tree failure can be an expensive process, so it is important to give young trees a ‘good start in life. A ‘weed’ free area around the planted tree reduces competition for water, light etc. In theory, it should be possible to reuse plastic guards, but they are often damaged, degraded or have to be cut to remove them from the young tree.  As they are not biodegradable, it is important that they are collected and removed. Ideally this material should be recycled.  If many trees are being planted, it may be simpler / more cost effective to fence off the planted area to protect young trees from browsing activity. Because of the problems associated with plastic tree guards, there are now a number of alternatives available.  For example, wool-based tree guards / shelters (eg. Next Gen) are fully biodegradable being made from wool A biodegradable polyol made from ethically sourced cashew nutshell liquid and castor oil A polymer that breaks down over time Other biodegradable forms of tree protection make use of a polymer made from sugar cane (eg. HyTex products).  Such guards decompose slowly through the action of microbes (bacteria and fungi), temperature and humidity, gradually forming a  compost - so their removal is not needed.  
Bees, agrochemicals and the microbiome

Bees, agrochemicals and the microbiome

by The blog at woodlands.co.uk, 23 October, 2023, 0 comments

Mason bees and agrochemicals The blog has reported many times on the threats to bees - money bees, bumblebees and ‘wild bees, such as mason bees / solitary bees.  The threat to bees from neonicotinoids has been well documented, now there is a report that suggests that certain other agrochemicals may be harmful to bees. Researchers at the Julius Maximilians University at Würburg have been investigation the effect of a fungicide (Fenbuconazole) on the reproductive behaviour of horned mason bees (Osmia cornuta).  A number of Osmia species are used to improve pollination in fruit and nut crops.    They are efficient pollinators having a special pollen collecting / carrying structure called a scopa.  Mason bees are solitary bees.  Each female is fertile and makes her own nest and no worker bees for these species exist. In the Spring, male and female bees emerge from a nest.  The males generally exit first and remain near the nest, ready to mate with the females.  A female bee selects a mate on their ‘smell’ / odour and the ‘quality’ of their thoracic vibrations (achieved through muscle contractions).  After mating the males soon die.  The females search for and select a nest site, visiting flowers to collect pollen and nectar for their nests.  Once a certain amount of food has been collected within the nest, the females lay their eggs on top of this material (in a series of cells) and then seal off the nest.  The eggs hatch to form larvae which feed upon the food and within weeks forms a cocoon, in which it continues to develop to an adult. Though the fungicide (Fenbuconazole) is considered to be of low toxicity and the bees were exposed to a sub-lethal dose, nevertheless the Fenbuconazole had significant effects on the bees.  Pesticide exposed males were more likely to rejected by the females, compared to ‘control’ bees that were not exposed to the fungicide.  The thoracic vibrations of the exposed males were less powerful / noticeable and the composition of their odour or smell was different. The smell of the bees is dependent on particular hydrocarbon compounds in their cuticle  - their exoskeleton.  It is possible, therefore, that the mating behaviour and reproductive success of these bees is being affected by agrochemicals. Carpenter bees. The microbiome refers to the collection of micro-organisms that lives on or in us, particularly within within the gut. Whilst these micro-organisms are small, they contribute to our health and ‘well being’. They offer protection against pathogens, help our immune system develop, and enable us to digest.  Just as we have a microbiome so do bees.  Scientists as York University (Canada) have been investigating the microbiome of three species of carpenter bees (from North America, Asia and Australia). The term "carpenter bee" comes from their nesting behaviour,  most species burrow into plant material such as dead wood or stems, though a few create tunnels in soil.   Social bees (like honeybees and bumblebees) acquire their microbiome by interacting with their hive or nest ‘mates’. Solitary bees, like the carpenter bees, get their microbiome from the environment as they forage for food.   The researchers found that: The bees’ microbiome contained Lactobacilli, which are important for good gut health, helping protect against fungal pathogens and facilitating nutrient uptake. They also discovered crop pathogens in the microbiomes of the carpenter bees which were previously only found in honeybees. Whilst these pathogens are not necessarily harmful, it is possible that the wild bees could be vectors for spreading disease.  With thanks to Pixabay  (Umsiedlungen and Sabinem34) for the above images of bees Finding flowers. Research at the University of Exeter has shown that bees can distinguish between various flowers through a combination of colour and pattern.  This selectivity is achieved despite the ‘acuity’ of a bee’s vision being quite low (about a 100 times lower than ours) - this means they can only see the pattern of a flower when they are quite close (a matter of centimetres).  The researchers analysed a significant amount of data on plants and visiting bee behaviour, and they used experiments involving artificial shapes and colours.  One particular finding was the importance of the contrast between the outside of the flower and the plant’s foliage.  This seemed to help beesfind their way to the flowers quickly .    
Trees and the vagaries of climate.

Trees and the vagaries of climate.

by The blog at woodlands.co.uk, 20 October, 2023, 0 comments

During a drought, the trees in a woodland or forest become 'stressed' and may die.  The  reason for their death is not immediately obvious (beyond lack of water), and  it is not possible to ‘transplant’ a mature tree and its complete root system to a lab for detailed investigations.  However, recently, researchers at the University of Innsbruck have taken ‘the lab’ to a set of mature pine and pine trees. The trees were fitted with rugged and waterproof ultra-sound detectors.  Some of the trees had their canopies covered by a ‘roof’ so that the summer rain was denied to the trees, and they essentially experienced a ‘drought’.   Drought stressed trees produce ultrasound ‘clicks’ (faint acoustic waves that bounce off of air bubbles) that can be picked up by the detectors.  Air bubbles or emboli form in the vascular system of the trees when they are struggling for water.  Water is drawn up the xylem vessels by the evaporation of water (via the stomata) from the leaves, there is a continuous column of water.  When the column of water breaks, bubbles form with the xylem vessels and the transport of water to the leaves is reduced.  If the flow of water is substantially reduced the tree will die. The sound detectors found that the spruces produced more clicks than the beeches when water stressed, suggesting more emboli were formed within their xylem tissues.  It may be that the beeches were able to access the deeper reserves of water in the soil, whereas the spruces had a shallower root system. Trees can, of course, reduce water loss from their leaves by closing down their stomates.  But when their stomates are closed, they cannot take in carbon dioxide for photosynthesis and make the sugars / starch that they need for their metabolism.  At the end of the experiment, the trees that experienced ‘drought’ were drenched with water and most recovered well, and their rates of photosynthesis caught up with the ‘control’ groups of trees (those with summer rain).  However, the spruces’ water reserves were somewhat depleted; this was determined by measuring the resistance the tissues offered to an electrical current. The ability to withstand / recover from drought could over time affect the make up of woodlands and forests,  particularly if the trend for hotter and drier summers continues. Interestingly, some work in the United States (at University of Wisconsin–Madison) suggests that young tree saplings that have experienced drought or heat are more likely to survive when transplanted into more challenging areas.  It seems that the soil microbes that young saplings experience can help young trees establish themselves.  Saplings grown in soil (and microbes) that have experienced drought / cold / heat are more likely to survive when later transplanted and faced with similar conditions.  Trees with ‘cold-adapted’ microbes survived better when experiencing Wisconsin’s winter temperatures. The work was conducted with different species of tree in a variety of locations in Wisconsin and Illinois. The transplant locations varied in temperature and rainfall.  It may be that fungi that inhabit the roots of the saplings are involved in these ‘responses’, though the microbial population of the soil is diverse. For more details of this work, follow the link here.
After-effects of forest fires.

After-effects of forest fires.

by The blog at woodlands.co.uk, 13 October, 2023, 0 comments

In 2018, the blog reported on the extensive fires in Sweden, a country noted for its forests and woodlands, which cover approximately half of the country. Once the trees were mainly broad leaved species, but then oaks and alders began to decline.  By the middle of the  twentieth century,  Spruces and Pines were dominant.  This was mainly due to forestry management, to produce wood for fuel, charcoal [used in iron smelting], potash, tar and timber (for building). Fires burnt from the extreme north down to Malmo in the south. These fires affected some 20,000 hectares and destroyed woodlands valued at [circa] £50 million.  Now work by scientists at Uppsala University, the Swedish University of Agricultural Sciences (SLU), and the Swedish Meteorological and Hydrological Institute (SMHI) have examined the effects of the fires (of 2014) in the Vastmänland province, where the fires were ferocious, burning down into the soils. They have found that the 'forested areas' continued to lose carbon for several years after the fire, and that nitrate and phosphate input to streams and rivers increased after the fires. This spring and summer have again witnessed intense and widespread fires across the Mediterranean region, Canada and the United States. Fires are a problem not only because of their immediate destructive potential, but because they result in the release of carbon dioxide - which further contributes to global warming and climate change.  The United Nations Secretary-General said recently “The era of global warming has ended; the era of global boiling has arrived.” Data on these fires is not available as yet, but studies of the boreal fires in 2021 suggest those fires released some 1.76 billion tonnes of carbon dioxide into the atmosphere.  The fires contributed nearly one quarter of world wide carbon dioxide emissions from fires in that year.  [caption id="attachment_35352" align="aligncenter" width="650"] Woodland recovering from a fire[/caption] Boreal forests store roughly twice as much carbon in their trees and soil as tropical forests.  These forests (often referred to as the Taiga) surround the Arctic Circle and research suggests the Taiga is warming faster than the global average, so areas like Northern Canada and Siberia now experience more heat and drought than in the past, and consequently are more likely to suffer from fires. Clearly, when there is a fire, carbon dioxide (and many other carbon compounds eg soot / small particles) are released by the burning of the trees but there is also the effect of fire on the soil and its organic content - the humus.   Research indicates that during the fires in the boreal area some 150 tonnes of carbon dioxide may be released into the atmosphere per hectare.  Furthermore, even after the fire, carbon continues to be lost from the soil.  It may take some three years for carbon uptake by the soil to be recorded.   Fires also lead to the rapid loss (leaching) of nutrients (e.g. phosphate) to local lakes and rivers - as there is little or no vegetation to absorb the nutrients.   Rainfall is not intercepted by vegetation and so the flow of streams increases ( sometimes by 50%).    A research paper produced by the Desert Research Institute (in Nevada) has indicated that smoke from the burning of pines has the effect of making soil particles more water-repellent.  This repellency of smoke-affected soil particles could help explain the increased flooding, erosion, and surface runoff in fire damaged areas.  
A sense of touch in plants.

A sense of touch in plants.

by The blog at woodlands.co.uk, 6 October, 2023, 0 comments

Climbing plants like sweet peas can ‘feel’ their way around a support, a twig or fencing. Charles Darwin, who had an interest in climbing plants, described Clematis as a leaf climber.  Clematis has compound leaves with three to five leaflets,  It uses the stalks of the leaves or the leaflets to climb. Darwin noted that contact with another structure was enough for the leaf stalk / petiole to start bending around it.  This ability to respond to touch is termed thigmotropism.  It is a growth response.   The growth rate on the side of the stem that touches the 'support' is slower than on the side opposite the point of touch.  As a result the stem begins to curl around the support.  The same response is seen in plants that climb using tendrils, such as White Bryony.  Its tendrils are thin, wiry structures along the stem that ‘reach out’ into the space around a plant until they come into contact with something they can ‘grab’.  Once contact is made, the tendril curls, forming a coil. This sense of ‘touch’ has recently been investigated using Thale or Mouse Ear Cress.  It has been shown that the veins of the leaves respond to touch.  The investigators used small glass beads to apply a small but distinct pressure, and recorded a series of rapid electrical signals (not dissimilar to those seen in nerves).  Even when the veins were removed from the surrounding leaf tissue, they still showed electrical activity so the response was not reliant on surrounding cells.  The electrical activity was also associated with proton pumps (moving hydrogen ions).  The sensitivity of the veins to touch may be associated with the plant’s defence mechanism.  Animals like aphids use their mouthparts (stylets) to penetrate the vascular tissue in the veins.  The jasmonate system is involved in wound response. Another plant, the Venus fly trap (Dionaea muscipula), also responds to touch. It catches prey (insects and spiders) by means of touch.   Dionaea catches its prey with a trap, formed from the terminal portion of each of the plant's leaves.  The trap is activated by tiny hairs on the inner surfaces of the trap. When a hair is touched by an insect or spider crawling along the leaves, the trap prepares to close but it only snaps shut  if the hairs are touched again, within approximately twenty seconds of the first stimulus.  
Hedgerows revisited

Hedgerows revisited

by The blog at woodlands.co.uk, 1 October, 2023, 0 comments

Many hedgerows were planted originally to keep livestock, such as sheep, cattle, pigs, chickens in specific areas. Some hedgerows were planted to define boundaries – ‘who owned which bit of land’.  Hedgerows often surround fields.   The word ‘field’ comes from Old English ‘feld’, meaning 'an area of felled trees / open country'.   The establishment of many hedgerows was associated with the process of enclosure; a change in land use from arable to pasture (for sheep). Open fields and common land were enclosed by hedgerows, over many years the landscape of England changed. The C20th witnessed the opposite process, the removal of hedgerows for the creation of larger fields to accommodate larger machinery.  In the decades following the end of the second Word War, it has been estimated that a quarter of a million miles of hedgerow have been ripped out / lost.  Fortunately, there are now policies in place to halt or even reverse the loss of hedgerow.  Hedgerows are recognised as an integral part of our landscape and play an important role in the maintenance of biodiversity.  They provide habitats for a variety of animals and plants. Many species of birds nest in hedgerows, such as song thrush, yellowhammer and tree sparrow. Different species favour different heights within the hedgerow. Some species nest near the ground such as wrens and dunnocks, whereas others nest higher up (eg. Bullfinches).   The greater the variety of plant species in a hedgerow, the better the supply of pollen, nectar, fruits and seeds.  Ivy for example will produce flowers late in the year and offers a source of nectar and pollen.  Hawthorn, blackthorn and holly offer fruits in the winter months for birds and small mammals. Hedgerows and hedges have to be be maintained.  Such management may involve planting of trees or shrubs to fill gaps, coppicing, laying or cutting back. [youtube=http://uk.youtube.com/watch?v=Andv7a0NPEc 425 350] However, the effects of pruning and cutting back during the bird-nesting season can be disastrous. Mechanical flailing of a hedgerow is fast, effective and the regrowth is generally slower, but its effects can be particularly bad on birds. They may abandon their nests and / or  their eggs or chicks may be destroyed. The pruning / flailing may also reduce the insect populations of the hedgerow (or other other food sources) on which the birds depend.  Hedge pruning maintenance is :- ideally undertaken outside of the nesting season. and  only done every second or third year. [caption id="attachment_25527" align="aligncenter" width="600"] A flailed hedge[/caption] Hedgerows also support vital insect pollinators : butterflies, hover flies, moths and bees. These insects help with the pollination of crops such as oilseed rape, legumes and fruit trees. Other insects can help with crop yields by predating upon crop pests, such as green fly and blackfly (these may spread viral diseases on crops such as sugar beet).  Insects may overwinter in the hedgerow and move into the fields come the Spring, as the aphids start to increase in number.  If trees are left in situ, they may achieve veteran status.  Then their rough bark, cracks, holes and dead wood will support a diverse range of species. Owls, kestrels and bats may come to nest. There are also niches that offer opportunities for epiphytes, mosses and lichens.     The dead wood may be home for saproxylic beetles.   Hedgerows also act as corridors linking to other hedgerows, woodlands etc along which animals can pass (for example, hedgehogs and other small mammals). Hedgerows provide important wildlife corridors across agricultural landscapes. They provide food for insects, small mammals and birds (due to the range of plants and their different flowering and fruiting times). They provide nesting and roosting sites for birds and bats, and ‘homes’ for a variety of small mammals.  Many insect species over winter in hedgerows. The trees and woody shrubs help with carbon sequestration. Hedgerows offer a windbreak, reducing wind speed and hence lowering soil erosion, they may also offer shelter to animal stock.  The roots also help stabilise the soil. [caption id="attachment_40483" align="aligncenter" width="675"] Hedge with beech, nettle, dog rose, brambles, hazel and ash - amongst others[/caption]  
Losing woodlands and forests.

Losing woodlands and forests.

by The blog at woodlands.co.uk, 22 September, 2023, 4 comments

Across the world forests and woodlands are under threat,  suffering  fragmentation and shrinkage.  This is not good news for the plants and animals that rely on these habitats for their survival.   In a large forest or woodland, animals can move around over considerable distances in search of food / partners - without having to leave the area that supports them.  Similarly, plant seeds when dispersed are more likely to find the micro-climate that they need for germination and subsequent growth (humidity, shade, soil type etc).  Some species have very ‘exacting’ requirements that can only be met in the heart of a forest or woodland.  For example, there is a frog that is restricted to undisturbed mountainous forests in Borneo. Sadly, recent surveys suggest that many forests continue to suffer from fragmentation / loss of area.  The two main reasons for this loss are : clearance for agriculture (palm oil plantations etc) - this has mainly affected tropical and sub tropical area.  Sometimes fires are used as a deliberate ‘tool’ to clear an area of forest so that the area can then be used for agriculture. wild fires - these have affected the Boreal Forests but also regions of the Amazon Basin.  In areas like Siberia and Canada, drought and high temperatures have lead to extensive fires. (Zombie fires are underground peat fires that smoulder in the winter months but reignite when the ground dries in the Spring or Summer.) Recent times have seen extensive fires across Siberia, Canada, parts of the West Coast of America and Australia. Woodlands have experienced fragmentation due to the expansion of agriculture, the building of motorways & roads, and the expansion of housing.  Wild flower meadows have suffered even more dramatically - with some 90+% lost in relatively recent times. Obviously fires are devastating locally, killing vast numbers of animals and plants. Fire also destroys the organic content of the soil and its complex microbial population.  The plumes of smoke released by fires (such as those seen in Canada and Australia) spread extensively.  The Canadian fires (883 fires raging at one point) left mile after mile of blackened forest, and forced hundreds of people from their homes.  The smoke spread far beyond Canada’s borders, as far away as parts of Europe.  New York City was ‘bathed’ in an ‘orange haze’ and experienced a hazardous level of air pollution. The plumes from such fires are rich in black carbon soot.  The soot particles absorbs solar radiation, keeping heat in the atmosphere. Recent analysis of smoke plumes indicates that there is also ‘dark brown carbon’.  This consists of a previously unknown type of particle and whilst these particles absorb less light per particle than black carbon, they are approximately four times as many brown carbon particles in wildfire smoke (compared to black soot particles).  There is also the suggestion that these brown particles retain capacity to absorb solar radiation for longer.  
Sweet chestnut finger-jointing at InWood in Whitesmith,East Sussex.

Sweet chestnut finger-jointing at InWood in Whitesmith,East Sussex.

by Angus, 15 September, 2023, 1 comments

Chestnut coppice grows in abundance in the South East of England, especially in Kent and East Sussex. However it is quite small diameter, being harvested about every 15-25 years. The timber is very strong and resistant to rot. For some uses it is better than oak and unlike softwoods it does not need treating with chemicals. The problem is how to turn these relatively thin stems into useable pieces of timber and a small company, InWood, has found an answer. I was visiting The Woodland Centre to collect a batch of six-inch decking that the factory team had made for me, and they offered me a tour round the factory. Their answer is to glue it together using finger-joints which are actually stronger than the wood itself and you can use it for decking, cladding and even structural beams. My decking boards had machined-in grooves to stop it being slippery and there were other options for width such as their three-inch or four-inch boards. Peter Black, the factory manager, explained how they buy sweet chestnut planks and process them by sawing them to width, taking out the knots and any wood that is rotten or infested with woodworm. He says that there are also occasional shotgun pellets which need removing - many of the chestnut coppice woodlands in East Sussex are used for pheasant shoots. The sawing produces short pieces of the same width and thickness but the highlight for the visitor is seeing their German machine which automatically cuts a tooth-like pattern in each end and puts polyurethane glue on it. These sections are then pushed together to make long, virtually defect-free planks. The factory generates plenty of waste wood which burns well and burns hot - it is either used for heating the workshop or sold for firewood. Enviously I looked at the part of the workshop where they use a huge hydraulic press to make “Gluelam”, being laminated beams from planks. These bigger timber beams have lots of advantages over the alternative of using large sections of tree trunk: the wood is much more stable, is less likely to twist & warp, longer sections can be made and there is often less wastage. InWood’s front man is Alan Ellis whose phone number is 01825 872550, and he is happy to supply trade or retail. On their website (www.in-wood.co.uk) you can find some spectacular garden rooms which they make from laminated chestnut. We got our Sweet Chestnut decking from InWood because of the quality, and their sensible prices. This method of producing timber supports sustainable British Forestry as well as the coppicers.  Successive generations of coppice workers have used their skills since at least Roman times, when sweet chestnut was first introduced to southern England.

« Previous PageNext Page »