Woodlands.co.uk

Blog

Make Americans Green Again

Make Americans Green Again

by Angus, 25 July, 2024, 0 comments

Here in the Pacific Northwest of the USA (Washington State) there are some of the most incredible woodlands in the world. There are rainforest woodlands with trees over 300 feet tall such as the world's tallest Douglas Fir at 302 feet. In fact there is so much tree cover (52%) that the size of the timber industry - of this state alone - is almost seven times that of the UK. But woodlands are not just about growing trees - they can be about improving quality of life. The State parks in the US actively encourage visits and they have created tracks/trails that are easy to walk along and that have easy parking. One woodland that I visited on the Pacific coast even had signs to promote wellbeing. Maybe these are preaching to the choir in that you had to be walking on a footpath to see them but they still offered useful and encouraging information along these lines: "being outdoors lowers your chance of developing short-sightedness", "outdoor breaks relieve more stress than indoor breaks", "forest air boosts your immune system", "physical activity in green spaces boosts your self-esteem". Perhaps, too, Americans can teach the UK lessons about promoting camping in woodlands. The State Parks have plenty of places where RVs (Recreational Vehicles - camper vans) can stop for the night and they also promote "through hiking" which means doing a trek of several days and spending the nights sleeping out in a tent. The tradition goes back a long way but was given a huge boost by Theodore Roosevelt who camped out in the wilderness and learnt bushcrafting techniques: he subsequently directed this enthusiasm towards creating "National Memorials" which became some of the early US National Parks. So, can the "health crisis" which is sweeping the UK and the US be averted with the help of getting more people into woodlands? In the US there is a long way to go as there were only around 150 million recreational visits to woodlands annually. Bearing in mind that many visits will have been by the same people, this indicates that only a small minority of the US' 333 million visits a woodland in a typical year. The pandemic effect pushed up the typical number of visits to a somewhat higher level. Can Kamala Harris or Donald Trump push this up further? Indeed, will they even try to?
Grey squirrel damage.

Grey squirrel damage.

by The blog at woodlands.co.uk, 22 July, 2024, 0 comments

Much has been written about the explosion of the UK deer population in recent times, and the damage to woodlands through their browsing activities.  However, the grey squirrelis associated with tree damage.  The grey squirrel is not just the 'cheeky chap' who steals the bird food in the garden, it is a serious pest.    The grey squirrel is a non-native species.  It was introduced in the 19th century.  The squirrels have spread across the country and have displaced the native red squirrel from many areas (either through competition or disease).  The grey squirrel's bark stripping activity now poses a threat to the sustainable management of woodlands. Gnawing of the bark means that they can get to the sweet, sap filled tissue (phloem) just beneath the bark. This tissue is responsible for the movement of sugars and other organic molecules around the plant (known as translocation). If the gnawing extends around the stem then the tree is ‘ringed’ [i.e a complete circle of bark and underlying tissue is removed]  then the tree us likely to die.  The squirrels tend to take bark from the main stem (and branches). The bark stripping may : Lead to the loss of particular tree species (for example, beech) Lead to the loss of insect / spider and fungal species associated with the loss of tree species, i.e. a loss of biodiversity allow fungal infection of the tree Reduce carbon capture Reduce the economic value of timber Act as a disincentive to creating new woodland for timber In order to reduce squirrel damage, it is important to Start inspecting for damage in late February as damage typically occurs in early Spring.  Examine the base of trees for damage. Look for ‘tester patches’ made by squirrels (to which they may well return later). Check young, broadleaf trees as they are particularly favoured by the squirrels.  Oak and beech are quite vulnerable to damage (see image of damaged beech trunk below). Recent research* at Bangor University has investigated the microbiome of the squirrel in relation to its bark stripping activity.  The microbiome of the gut refers to the various micro-organisms found with the intestines.  Analysis of bacterial DNA found in the colon of great (and red) squirrels revealed that grey squirrels had 'oxalobacter' bacteria in their colons.  These bacteria are able to 'release / access' calcium from the tree bark to the squirrels.  Calcium is an important nutrient in terms of bone building and is also involved in muscle contraction. had  a more diverse bacterial population in the colon. These findings may help explain why the grey squirrel 'outcompetes' the red squirrel.  Their more diverse gut microbiome may mean that they can access a greater range of resources. For example, grey squirrels can digest acorns, which red squirrels cannot;  this is possibly associated with tannin content of acorns. In order to reduce damage in a woodland, the number of grey squirrels may need to be managed.  This can be done though trapping or shooting.  Trapping is a legally acceptable and effective way of controlling grey squirrels in most situations. Grey squirrels can be trapped throughout the year though March to September is a good time as food is less abundant. Through autumn, berries, nuts and seeds [natural foods] are available so trapping is less successful.  Details of the various types of traps and their use / placement may be found at: https://greysquirrelcontrol.co.uk/trapping-method.php https://www.britishredsquirrel.org/wp-content/uploads/2016/07/Grey-Squirrel-Best-Practice.pdf https://basc.org.uk/pest-and-predator-control/grey-squirrel-control-with-live-capture-traps/ https://www.britishredsquirrel.org/wp-content/uploads/2016/09/Trapping-Protocol.pdf  https://bpca.org.uk/a-z-of-pest-advice/squirrel-control-how-to-get-rid-of-squirrels-bpca-a-z-of-pests-/188983 To go down the ‘shoot to kill’ route then there are a number of rules and regulations to observe.  Details may be found in the link below : http://www.britishredsquirrel.org/grey-squirrels/grey-control/ It is hoped that eventually a form of oral contraception will be developed, which will offer a non-lethal and humane means of population control. Full details of this research work may be found here
The stinging nettle, a woodland and urban plant.

The stinging nettle, a woodland and urban plant.

by The blog at woodlands.co.uk, 15 July, 2024, 1 comments

Stinging nettles grow in a wide range of natural habitats, river banks, swamps, meadows, wastelands, floodplains, disturbed areas and gardens. They are are particularly effective colonisers of disturbed, bare or ‘waste’ ground. They flourish in nitrogen-rich soils.  Their seeds can lie dormant in the soil for some five years (and can even survive soaking in salty water), plus they spread using their underground rhizomes. Nettles may not be the most friendly plants to us, as their leaves and stems are ‘armed’ with special ‘hairs’. The hair-like structures are termed trichomes and each trichome has a hollow tube-like structure. At the bottom of the tube is a swollen base, which is filled with a number of chemicals, (including histamine, serotonin, formic acid and acetylcholine). The tip of the tube is easily broken, leaving a sharp point that can penetrate the skin and deliver the ‘biochemical cocktail’. [caption id="attachment_7154" align="aligncenter" width="600"] Trichomes - loaded with their chemical 'cocktail'[/caption] [NB: there is a video on YouTube that shows this mechanism here.] This collection of chemicals gives the characteristic rash/inflammation of a nettle sting.  Nettles may be found near to dock leaves which, if crushed and rubbed where you have been stung by the nettle, may take away some of the pain. More detailed information on the chemistry of the 'chemicals' in the nettles can be found here.  The hairs / trichomes probably evolved as a defence mechanism to limit grazing by sheep, deer or rabbits. Despite their ‘weaponised hairs’, nettles are in fact very good for wildlife, particularly in urban / sub-urban areas.   This is also true in areas under intensive farming practices.  The spread of farming, urban sprawl, habitat fragmentation and pollution have all contributed to the loss of natural habitats (for plants and animals), and that’s without mentioning climate change. Stinging nettles are the food plant for the caterpillars of comma, painted lady, peacock, red admiral and small tortoiseshell butterflies. The presence of nettles in our gardens and urban areas has allowed these butterflies in. And it’s not just butterflies that rely on nettles. For example,  ladybirds often lay eggs on nettle leaves. This insect might be termed a “gardener’s friend” as it has a voracious appetite for aphids - greenflies and blackflies that suck the sap from plants, ravage the vegetables in our gardens / allotments, Some aphids spread plant viruses, for example, virus yellows on sugar beet. Having nettles in our gardens and near farms give ladybirds and other insects somewhere to shelter, ready to feast when the aphid population rises. Aphid populations can rise very quickly as females give birth to live young, without fertilisation. Nettles can be used to make tea, soup, flavour beer, wrap cheese (Cornish yarg) or make cloth.  Using nettle fibres to make fabric / clothing is a very old practice, dating back to the Bronze Age.  Nettles can also be used to dye fabric [caption id="attachment_34107" align="aligncenter" width="650"] stinging nettle[/caption]
The common ragwort

The common ragwort

by The blog at woodlands.co.uk, 7 July, 2024, 0 comments

Ragworts are a group of daisy-like flowers.  The flowers are actually composites, that is, they are made up of many smaller flowers held together in a structure called a capitulum.  The family of daisy-like flowers is known as the Asteraceae (previously called the Compositae).  There are several different species of ragworts, for example : Common Ragwort (Jacobaea vulgaris, previously Senecio jacobaea) Oxford Ragwort (Senecio squalidus)  Hoary Ragwort (Senecio erucifolis) Marsh Ragwort (Senecio aquaticus) Silver Ragwort (Senecio cineraria) Perhaps, the Common Ragwort and the Oxford Ragwort have attracted the most attention in recent times.  The story of the Oxford Ragwort is interesting. The plant is actually native to Sicily, growing on volcanic ash and scree.  It was grown in the Oxford Botanic garden around 1690.   After some years, it ‘escaped’ and could be seen growing around Oxford.  Later, with the advent of the railways, it was able to spread along the railway tracks and then across the country. The genetics of this plant and related species have been the subject of various research projects in recent years, and has resulted in the ‘reclassification’ of some ragwort species. However, it is the Common Ragwort (Jacobaea vulgaris, previously Senecio jacobaea) that has been the focus of much attention.  This is a native, biennial plant, but can be perennial. Its seeds are spread by wind and a single plant can produce thousands. Consequently, it can become a problem on waste land or other uncultivated areas. Ragwort may be seen in coppiced woodland,  particularly in the years immediately after cutting the coppice when there is lots of light and the ground flora 'comes alive'. The plant is a good food source for a wide range of insects and it is much 'loved' by pollinators.  Over a hundred insect species feed on its nectar  (bees, flies, moths and butterflies).  Not only is it a good source of nectar, it also provides a home and / or a food source for many invertebrate species.  Some insects feed on the ragwort exclusively.  [caption id="attachment_40185" align="alignleft" width="300"] Cinnabar moth caterpillar[/caption] One species that is particularly associated with this plant is the cinnabar moth, whose status is described as ‘common and widespread, but rapidly declining”.  The caterpillars are distinctive with yellow and black stripes. They feed on the ragwort absorbing its alkaloids, which make the caterpillars distasteful to predators.   Alkaloids are organic compounds produced by plants and many of them have potent medical uses - such as quinine (for malaria) or morphine (pain relief).  Most alkaloids have a bitter taste.  Many alkaloids are toxic (for example, atropine from the nightshade family of plants).  The alkaloids present in ragwort can make it a problem when present in fields / areas grazed by horses or cattle, though it is not usually a problem in gardens.  Horses do not normally eat ragwort due to its bitter tasting alkaloids but if consumed in any quantity then the alkaloids can cause liver damage (a form of cirrhosis). [caption id="attachment_40489" align="alignleft" width="300"] Tweet from Prof Goulson[/caption] Ragwort poisoning is relatively uncommon and may arise through feeding with hay that contains dried ragwort.  In U.K., the common ragwort is classed as an injurious weed under the provisions of the Weeds Act 1959, and there is the Ragwort Control Act 2003.  The latter provides for a code of practice relating to ragwort.  Removing common ragwort from an area is not without its problems.  Sometimes, other species are ‘identified’ as ragwort and sprayed with weedkiller.       Friends of the Earth have produced a ‘briefing’, which notes that Ragwort has been blamed for animal deaths which are unproven Scare stories have been based on poor or irrelevant statistics, and biased surveys Ragwort has been falsely labelled as a threat to human health / the countryside As a result, unnecessary measures have been used to control ragwort (in nature reserves or areas like the New Forest, and indeed roadside verges). The briefing, entitled  “Ragwort: problem plant or scapegoat?” which can be accessed here offers a number of solutions to the ‘ragwort problem’  
The bee 'microbiome'.

The bee ‘microbiome’.

by The blog at woodlands.co.uk, 29 June, 2024, 0 comments

The honey bee, Apis mellifera, stores food in the form of bee bread. Bee bread is formed through the fermentation of a mixture of pollen, nectar and bee saliva.   It is 'inoculated' with a range of bacteria and yeasts that ferment the material after storage in the comb cells of a hive.  Bee bread is the chief protein resource for bees, particularly for the feeding of larvae [and adults].  As it is a nutrient-rich material, it ‘supports’ various microorganisms, despite its acidic nature and low water content. Bee bread is also coated with propolis.  Propolis (sometimes called ‘bee glue’) is a resinous substance collected by bees from tree bark and leaf buds. This resin is ‘chewed’, mixed with salivary enzymes and the partially digested material is mixed with beeswax.  It is an antimicrobial substance.  It is used by bees to seal holes in their honeycombs and help in the construction of the hive. The very nature of bee bread and the coating of propolis create a ‘challenging environment’ for microbes to grow and survive.   However, despite the ‘unwelcoming’ nature of bee bread, several species of fungi and bacteria form a microbiome within a hive, and are thought to play an rôle in the life of the bees. Recent studies have revealed that the fungus Aspergillus flavus is well adapted to survive in bee colonies.  A strain extracted from a hive was found not only tolerate low pH (which other strains of the fungus could not cope with) but could also deal with the low water content of bee bread, and with the propolis - which is thought to have anti-fungal properties.  Further work demonstrated that this strain of the fungus had mutations that allowed it to develop within the ‘bee bread environment’.  That this fungus can live with the bees suggests that there might be some form of mutual benefit to both fungus and bee, but the relationship (if there is one) is not as yet understood. Full details of this study can be found here  
Deer in woodlands

Deer in woodlands

by The blog at woodlands.co.uk, 22 June, 2024, 3 comments

Woodland covers some 1,000 hectares of the Ashdown Forest, that is roughly 40% of its area. Much of the woodland is relatively young. However, the forest’s capacity for regeneration / renewal is being damaged by overgrazing.  Local deer populations have grown and now represent a problem. Deer browse / graze on vegetation, shoots, flower buds and foliage are stripped off plants.  Young saplings are damaged and bark is eaten, especially when food is scarce.  Consequently, tree and shrub regeneration is limited.  Other species are affected by the feeding of the deer, either through loss of niches or food.  Among those at risk are small mammals and certain butterfly species. [caption id="attachment_34368" align="aligncenter" width="650"] deer damage[/caption] Damage is found in woodlands in many parts of the country, as deer populations have increased in recent times. In the 1970s, the deer population was estimated to be around 450,000 as compared to today’s estimates of over 2 million.  The National Forest Inventory highlighted that "40 percent of British forests have ‘unfavourable’ levels herbivore damage, which limits the survival of young trees and threatens biodiversity".  Apart from deer damage, there is damage by the grey squirrel populations. Deer browsing can : Prevent natural regeneration Affect biodiversity Affect woodland resilience Reduce food availability to the herd which can lead to starvation / loss of condition Deer are also hosts to ticks.  The ticks may be infected with Borrelia burgdorferi  bacteria and transmit them to humans, resulting in Lyme disease. Deer  also contribute to collisions with motor vehicles; more than 450 deer were hit by vehicles on Hampshire roads last year .  In Scotland,  government agency figures indicate that deer vehicle collisions  [DVCs] have almost doubled between 2008 and 2020.   Sadly, people are injured or killed in DVCs, and the repair cost to vehicles runs into millions. The solution to the ‘problem’ is not clear cut. Culling [the selective killing of animals] to control deer populations is one way in which numbers can be reduced, and the damage to woodland mitigated.  However, this approach has been met with opposition by many, including animal rights organisations.  There is the argument that whilst a reduction in deer numbers might fix some problems in the short term, the subsequent increase in plant growth and food availability might lead to increased breeding by the remaining deer and numbers would then increase again.  Also, unsuccessful or inaccurate shooting leads to animal suffering, mutilation and / or a lingering death.   Some might advocate rewilding and the introduction of apex predators (such as the wolf, lynx, wild cats*) as a means of reducing numbers but that might raise other problems! Deer have been 'part and parcel' of woodlands since mediaeval times, when the forests were used for hunting. In the Ashdown Forest, the number of red deer declined during the C17th,  and poaching was a factor in their decline. Fallow deer numbers also declined. [Fallow deer were introduced to England by the Normans around 1100 AD.]  The deer population roaming the forest has increased significantly in the recent decades, and now there are the relatively recently introduced species, muntjac and sika deer.   There are six species of deer in UK woodlands – the two native species, the red deer and roe deer and fallow, muntjac, sika and chinese water deer make up the four non-native species. The problem of over grazing is not unique to the Ashdown forest. For example, deer numbers in Scotland have doubled in recent years to almost a million since 1990.   Finding sustainable (and humane) solutions to the large numbers of deer is difficult. * Wildcats were once widespread in Britain, but by the end of the 18th century, they were to be found only in the northern regions. [caption id="attachment_34415" align="aligncenter" width="700"] Remnants of birch woodland near Loch Muick are subject to browsing by red deer (especially in the winter), so temporary fences have been put in place to allow for regeneration.[/caption]
Trees mitigate urban heat

Trees mitigate urban heat

by The blog at woodlands.co.uk, 14 June, 2024, 0 comments

With global temperatures rising and many places facing extremes of temperature, cities and urban environments often face the brunt of these climate extremes.  Cities absorb and hold onto the energy of the sun, creating ‘urban heat islands’. Recently, the temperature in New Delhi soared to a record high of 126.1oF (52.3oC), and other areas of India also suffered from the heat wave that claimed lives.  At a personal level, the shade of a tree can offer a place of refuge on a blisteringly hot day but a neighbourhood can benefit from the careful and strategic planting of trees.  Greater tree cover can mean that neighbourhoods are measurably cooler than those with few trees. If a heat wave is prolonged, then the physiological stress that people experience builds, affecting the old and young particularly.  Extreme heat / temperatures can also result in elevated levels of ozone, which affects people with asthma.  High temperatures may also be accompanied by high humidity and if the air has a high level of water vapour this makes it difficult for people to lose heat through sweating.  As water evaporates from the skin, its change of state (liquid to vapour) takes heat from the body. Researchers at UCLA analysed the ‘effects’ of four heat waves that occurred in the early years of the 21st century in Los Angeles, they focused on areas that varied in tree cover and pavements and road cover (essentially impermeable surfaces).  They also gathered information on ‘heat related’ visits to medical facilities.  They found that greater tree cover (and more reflective surfaces) reduced the number of heat-related medical interventions.   Whilst it might be agreed that increasing tree cover in urban settings is a good idea, there are practical problems.   Firstly, which trees to plant?  Ideally, the trees planted should be able to cope with the changing climate.  We don’t know what the climate will be like in 20 or 50 years but ideally the trees planted now should be able to cope with what nature might ‘throw at them’. Secondly, caring for the trees.  After planting, trees are vulnerable.  They need care and protection.  They need water - which is becoming an increasingly scarce resource in some parts of the world. Planting more trees needs to be coupled with increasing ‘green areas’ where water can permeate after rainfall into natural aquifers or water storage systems. Community involvement is also needed so that the trees are not only planted in areas where they will give the greatest benefit, but where people want them and will nurture them.   Los Angeles now has an Urban Forest Management Plan.  It aims to increase tree canopy in particular areas, locating areas to plant trees and collaborating with the residents of the areas.
Creating a 'Bender Chair'

Creating a ‘Bender Chair’

by Angus, 7 June, 2024, 1 comments

Lisa Bradford and her husband Paul run Willow Bushcraft a non-for-profit enterprise. They borrow a woodland in Kent owned by Woodlands.co.uk, and here Lisa writes about making a “Bender Chair”. Crafting a Masterpiece: This is how two students built a unique “Bender Chair” from hazel wood.    Creativity and craftsmanship came together in an extraordinary project undertaken by two dedicated students from a local school. These two students find it difficult in a mainstream school setting so attend a unit attached to the school. Over the course of a term, the two students transformed raw hazel rods into a stunning bender chair, showcasing both their hard work and newfound woodworking skills. The Inspiration for this journey began with a simple yet ambitious idea: to create a piece of furniture using traditional woodworking techniques. Inspired by Ben Law’s Woodland Craft book the natural beauty and flexibility of hazel wood, the students decided to build a bender chair. This type of chair, known for its distinctive curved lines and rustic charm, became the perfect canvas for their creative efforts.  The process involved coppicing hazel rods which had to be gathered from the woods. Both students learned the ancient technique of coppicing, a sustainable method of harvesting wood that encourages new growth. They explored March Wood, in Kent, to select and cut the perfect hazel rods, each one carefully chosen for its flexibility and strength.Next they assembled the chair by spending a couple of hours every week to their project, working with patience and precision. They crafted the frame first, measuring and cutting the hazel to size and ensuring the frame was sturdy and well-balanced. Week by week, the chair started to take shape. With their hazel rods in hand, the chair-makers began the meticulous process of shaping the chair. This involved bending the freshly cut rods into the desired forms for the seat, back, and armrests and tacking them into place. After weeks of diligent work, the students finally completed their bender chair. The result was nothing short of remarkable. The chair, with its gracefully curved lines and natural finish, was a testament to their hard work and creativity.  But the project provided the students with more than just a beautiful piece of furniture: it was a learning experience that taught them valuable skills in woodworking. More importantly, it gave them a profound sense of achievement and pride. They had started with a vision and, through perseverance and teamwork, brought that vision to life. Looking back on their journey, the students expressed immense satisfaction. They had not only learned about woodworking but also about the importance of patience, attention to detail, and sustainable practices. Their success with the bender chair has inspired them to take on more projects, and they hope to continue exploring the world of traditional craftsmanship. Forest Schools such as Willow Bushcraft are brilliant for hard-to-reach students who struggle in traditional classroom settings, and participating in forest school offers a transformative experience. Immersed in the natural environment, these students engage in hands-on, practical projects that ignite their curiosity and foster a sense of achievement. The forest school setting allows them to learn through doing, tapping into their innate creativity and problem-solving skills. This alternative educational approach not only enhances their self-esteem and confidence but also helps them develop essential life skills such as teamwork, perseverance, and adaptability. The “bender chair” demonstrates how outdoor learning can inspire a love for learning in even the most disengaged students.

Next Page »