Woodlands.co.uk

Blog - climate change

Woodlands web updates : 30

Woodlands web updates : 30

by The blog at woodlands.co.uk, 6 March, 2024, 0 comments

Bees and light Honey bees need to sleep.  Unlike us, they do not sleep for long periods but they take ‘naps’ during the day and the night - within the hive where it is dark.   If the hive becomes over heated, then bees will move outside the hive and beat their wings to fan cooler air into the hive.  If the bees are exposed to artificial light during the night then there is evidence that their ability to perform the ‘waggle dance’ is impaired.   The dance is important as it tells other bees where to source pollen and nectar.   Cooling of the hive may become increasingly necessary with climate warming (and heat spells), which in turn might expose bees to artificial light at night.  Hives might need to placed away from road sides (hence car lights) and street lights.  An ancient pine. The Wollemi pine is rightly described as a living fossil.  It is a plant that has remained unchanged for millions of years.    An almost identical fossil form dates to the Cretaceous period , some 145 million to 66 million years ago.  Whilst the trees were abundant some 8 to 6 million years ago, now only 60 trees exist in the wild (in a canyon northwest of Sydney) and they are at risk of wild fires. The population of these pines has dwindled as the climate in Australia became drier and warmer.   The genetic make-up of the species has recently been analysed.  It turns out that the tree's 26 chromosomes contain some 12.2 billion base pairs; by comparison, the human genome has 3.4 billion base pairs.  The research also indicated there was very limited genetic diversity within the Wollemi pine population.  The existing trees appear to  have abandoned sexual reproduction, and now reproduce mainly by cloning, suckers emerge from the base of a tree and then grow on to become ‘new’ trees. Whether this remnant population of the Wollemi pine will survive ongoing climate change (and increasing risk of fire) remains to be seen.  The wollemi pine also appears to be susceptible to disease, in particular to Phytophthora cinnamomi, a pathogenic water mold that causes dieback.  
woodlands web updates : 29

woodlands web updates : 29

by The blog at woodlands.co.uk, 10 December, 2023, 0 comments

Flowers of the woodland floor. Some woodland flowers enjoy the dappled light of the woodland floor beneath the canopy.  They grow in relatively shady, cool and damp conditions in the humus-rich soils.  Polish scientists at the Nicolaus Copernicus University have been studying four species that often grow together in European woodlands - namely Wood anemone Yellow anemone Lily of the valley Common may lily These are perennial plants that ‘come to life’ in Spring, producing a carpet  of flowers across the woodland floor.  However, as much as they share a liking for the shady, cool and moist conditions found there, they differ in their sensitivity / tolerance to rainfall / moisture levels in the summer months: which may change their distribution as summers become warmer and longer.  The team modelled various warming scenarios which suggested that the ranges of these species may change / contract with hotter and drier summers.  The common may lily is one that may be particularly affected and no longer share the same range or woodlands as the others studied.  If climate change takes a hold, it may be that ‘assisted migration’ may be needed to help such plants to find suitable ‘climatic refugia’. more on plant migration ...... With climate change, both plants and animals need to adapt.  With increasing warmth, many species may ‘need’ to move towards cooler latitudes.  Whilst many animals are mobile, they may be able [over time] to access new suitable areas, plants on the other hand are dependent on the dispersal of their fruits / seeds.  Fruit and seed dispersal may involve various animals, including birds.  If the birds are resident or non-migrating species, then it is probable that they will only disperse seeds over relatively short distances.   Migratory birds however travel great distances but often in the wrong direction.  Many birds that migrate at the end of the summer, travel south to warmer climes.  Work at the University of Exeter has studied a number of woodlands across Europe and bird species that feed on the fruits of 81 plants species (and help disperse their seeds).  They found that only about a third of the plants had fruits (seeds) that might be dispersed northwards by birds.  To benefit from this northward dispersal, the plants needed to either have a very long fruiting period (eg.holly, juniper) or a very late fruiting period (eg. Ivy). Full details of this study here Food production and food waste. As Sir David Attenborough has pointed out in a recent episode of Planet Earth III, producing food to feed the world comes at significant environmental cost.  Natural ecosystems are often burned (forests) or drained (peatlands) and then turned over to agriculture to produce crops or farm animals. The forests of the Amazon have been significantly affected by burning and logging,  with the concomitant loss of biodiversity.  But they are not alone. In Mexico, forests are being lost as the land is being turned over to avocado production.  Mexico’s neighbour, the USA has a voracious appetite for this fruit.  The forests are being turned into ‘avocado orchards’.  Avocado trees are ‘thirsty’, they need a generous supply of water.  They consume much more water than the natural species [eg. oyamel), so that natural aquifers are being depleted.  This affects local farmers growing crops such as tomatoes and corn. One particularly sad aspect of food production is that much of the food is wasted. Some is lost between harvest and reaching the retail sector, and then more is ‘lost’ in the home. Food may not be used, or not used in time so it starts to rot, become rancid etc.  A lot of food goes to land fill, where it may generate methane - a potent greenhouse gas. Sprouting sequoias. In recent times, there have been many images of the fires ravaging the forests of the west coast of the States.  Many thousands of hectares and millions of trees have been lost, including many of the giant redwoods.  However, recent studies have found that some of the burned Sequoias are producing new growth.  They are sprouting from roots and trunks, from dormant buds that have lain hidden under the thick bark for decades, this despite the loss of the canopies of the trees.  To fuel this growth, the trees are using reserve materials that have been stored for 50+ years.
Where do butterflies come from?

Where do butterflies come from?

by The blog at woodlands.co.uk, 14 July, 2023, 2 comments

An obvious answer to this question would be - caterpillars.  But when did butterflies first appear?  There are now some 160,000 species of moths and butterflies -worldwide.  Seemingly, they appeared some 100 million years ago  - in North America.  They evolved from nocturnal moths in the period when flowering plants were undergoing a major expansion (in the Cretaceous period).  Butterflies may have become diurnal to avoid predation by bats, or it may have been to take advantage of nectar production and availability [using the proboscis]. The butterflies and their caterpillars were able exploit the diverse range of food resources that these ‘new’ plants offered.  Butterflies moved out from North America to South America and then on to other parts of the world, though they probably did not arrive in Europe until some 17 million years ago. The evolutionary expansion of the butterflies has been investigated by researchers at the University of Florida; they analysed the genetic makeup of many species (from 90 countries).  They were able to build up a picture of the relationships between the various groups of butterflies and also determined their evolutionary point of origin.  They also catalogued the plants eaten by the caterpillars and it was found that some two thirds of butterfly caterpillars feed on plants from the legume family (the Fabaceae - peas and beans).  It is probable that the first butterfly caterpillars also fed on these plants. Research at the Georgetown University in Washington DC suggests that larger species of butterfly are ‘coping’ better with higher temperatures, associated with global warming.  Bigger wings seem to offer a greater range of movement and the opportunity to find new and suitable habitats.  Smaller butterflies are not faring so well.  The study involved an analysis of the range of some 90 North American species between 1970 and 2010, during which period the monthly minimum temperature increased by 1.5oF. Others have analysed the butterfly collections at the Natural History Museum, using digital technology.   The Natural History Museum’s British and Irish butterfly (and moth) collection is probably the oldest, largest, and most diverse of its kind in the world; some of the specimens date back over a hundred years The measurements of the various specimens were paired with the temperature that the species would have experienced in its caterpillar stage. It was found that for several species that the adult butterfly size increased as the temperature increased (during late larval stage). So, it may be that we will see a gradual increase in butterfly size as temperatures increase with global warming. Join the Big Butterfly Count ? Between Friday 14th July and Sunday 6th August , the big butterfly count will take place.   For full details visit : https://bigbutterflycount.butterfly-conservation.org/about Thanks to Angus for images.
Bumblebee pollen collecting

Bumblebee pollen collecting

by The blog at woodlands.co.uk, 10 July, 2023, 2 comments

Bumblebees (and bees) collect nectar and pollen.  Pollen is a vital food, used in the various stages of a bumblebee’s life. In Spring, newly emerged queens feed on pollen, then it is used to feed its their sister workers. The workers, in turn, take over the feeding of the colony (the larvae and future queens). If not enough pollen is collected, then the colony will not thrive, which can have significant long term effects.  Bumblebees are already facing many threats (from habitat fragmentation, agrochemicals and disease). The collection of pollen is a demanding process, and bumblebees will forage over a wide area.  They start their pollen collecting activities earlier than many insects as they can warm themselves up by ‘shivering’, that is, rapid muscle contractions which generate heat, warming the insects up ready for flight.  Bumblebees can fly in colder conditions and at higher elevations than many other insects. However, research at North Carolina State University has shown that the North American bumblebee (Bombus impatiens) can overheat when exposed to high temperatures (circa 42oC plus).  So,  if a bee is carrying a significant load of pollen and it is a hot day, its muscles have to work harder and the bee is at risk of overheating. A bumblebee loaded with pollen may be 2oC hotter than an unladen bee; it may be reaching its ‘thermal limit’ - a temperature at which its organs are damaged.  Climate change means that many parts of the world are now experiencing extreme weather events, when temperatures can reach into the forties. [caption id="attachment_39978" align="aligncenter" width="675"] Bumblee leaving foxglove[/caption] Increasing temperatures could affect the foraging activities of bumblebees in a significant way - affecting how much pollen is collected and how much pollination takes place.  If pollen collection is reduced then colony development is affected and so population numbers will be affected.  Bumblebees are key pollinators in natural and agricultural systems, and if their numbers decline there will be ecological and agricultural consequences.  
The Big Butterfly Count : findings

The Big Butterfly Count : findings

by The blog at woodlands.co.uk, 24 October, 2022, 0 comments

The results of this year’s Big Butterfly Count have now been published and the ‘top’ 5 butterflies are the gatekeeper, the large white, the small white, the meadow brown and the red admiral.  The count is a UK-wide survey that aims to provide a measure of the state / health of our environment by simply counting the number and type of butterflies (and some day-flying moths) we see in our gardens and parks. The good news is that the Gatekeeper is making something of a comeback, being the most spotted butterfly in the count.  The numbers of the Common Blue, Holly Blue and the Comma are also ‘on the up’.  The Comma has been making a slow comeback for some years.  This is associated with the Comma extending its range northwards.  Extension of range is also seen in the Holly Blue, it is thought to be associated with climate change.  Some twenty years ago, it was rarely to be seen in Scotland, but it was recorded in Edinburgh in 2006, then Ayr in 2008 and now has spread across large areas of Scotland.  [caption id="attachment_24954" align="aligncenter" width="600"] Comma butterfly : photo by A J Symons.[/caption] The Jersey Tiger Moth is another species that is extending its range. Once it was to be found on Devon’s south coast, but it has spread north and east.  It is now to be seen in gardens and parks in the Greater London area. These moths ‘like’ gardens, hedgerows and disturbed / rough ground. In coastal areas, they may be seen on cliffs and the upper reaches of a beach.  The caterpillars of this moth feed mainly on ground ivy, white dead-nettle, bramble and the common nettle.    There are differences between butterflies and moth, but there is no hard and fast rule to distinguish between them. Butterflies usually have ‘club-shaped’ antennae, whilst many moths have feathery or tapering ones.   Butterflies normally fold their wings vertically over their backs,  moths generally place their wings horizontally when at rest (but not all). Whilst this summer’s results offer some hope, and the warmth of this summer’s weather might be thought to have favoured butterflies, the overall trend / pattern of butterfly numbers is one of decline - for example, numbers of the Red Admiral and Meadow Brown are down, sadly a pattern seen in many insect species. The loss of suitable habitats, such as meadows and hedgerows, is thought to be a major factor in this decline.
The plight of the bumblebee

The plight of the bumblebee

by The blog at woodlands.co.uk, 12 May, 2022, 0 comments

We know that insects (especially, bumblebees, bees, hover flies) are the world’s top pollinators, and we also know from many reports that many insect species are in decline.  Crops such as tomatoes, blueberries, peppers, cocoa, coffee, almonds and cherries are dependent on these pollinators.  Climate change, increasing temperatures and extreme weather events are affecting plants and animals across the world, and it seems that social insects, like bumblebees, are particularly impacted. Research with bumblebee colonies (at Stockholm University) has indicated that if the colonies are exposed to higher temperatures (than normal) then the workers in the colonies were smaller.  This decrease in body size could affect their foraging behaviour and the collection of pollen,  which would mean less food brought back to the colony and reduced pollination of plants. Studies in the United States looked at some 20,000 bees  (bumblebees, leafcutter bees, mason bees etc) along the Rocky Mountains, a region which is vulnerable to climate change.  It was found that the larger bees (particularly bumblebees) and those that built nests with combs were affected most by increases in temperature.  On the plus side, smaller (soil nesting) bees fared better.  Bumblebees would seem to have a lower heat tolerance.  The loss of bigger bees, which generally can fly and forage further may again mean reduction in long distance pollination (which promotes outbreeding in plant populations). One reason why hot or hotter weather affects bumblebees is that it influences the nectar that the bumblebees collect.  The balance of the various micro-organisms (bacteria and yeasts) in the nectar changes.  Whilst bumblebees are attracted to nectar with some microbes in it, a small change in temperature can speed up the metabolism / growth of the microbes so that they use up more of the sugar - with the result that it is less palatable / less nutritious for the bees.  Experiments conducted at the University of California have shown that bees did not ‘like’ the nectar rich in microbes, nor a sterile one - with no microbes at all. There seems to be a 'happy medium' in terms of the composition of the nectar. There seems to be a growing consensus that climate change, increasing temperatures and extreme events are pushing bumblebees (in particular) beyond their physiological limits. [caption id="attachment_38081" align="aligncenter" width="650"] Bumblebee visiting foxglove[/caption]
The opening of the woodland canopy.

The opening of the woodland canopy.

by The blog at woodlands.co.uk, 6 May, 2022, 0 comments

Certain woodland plants are found in the understory.  Plants like wood anemones, woodruff and lungwort bloom early in the year. These plants make use of a ‘window of opportunity’ when the light levels are good as the tree canopy has not developed, the leaves have not yet expanded. They use this ‘window of light ‘ to flower.   However, climate change is affecting many ecosystems - including woodlands.  With warmer temperatures, leaf buds tend to open earlier and the leaves begin to expand.  If the window for growth is reduced, how can the wood anemones and others cope ? [caption id="attachment_38093" align="aligncenter" width="700"] wood anemone[/caption] To investigate this question, scientists based the Universities of Tübingen and Frankfurt examined thousands of preserved herbarium specimens of early flowering plants, dating back over a hundred years.  The sheets not only hold specimens collected when they were flowering but also have  information on ‘when and where collected’.  Each sheet is a a moment in time from over a century ago.  Collectively, the 6000+ sheets allowed the scientists to establish historic flowering times of woodland plants over large areas of Europe. [caption id="attachment_38094" align="aligncenter" width="700"] Woodruff[/caption] The information extracted from the herbarium records revealed that plants like wild garlic and wood sorrel now bloom some six days early than at the beginning of the twentieth century.  For each 1oc rise in (Spring) temperature, their lowering has advanced by more than 3 days.  This means that they have gained time in the light - in an open canopy.  Whilst they may have gained time,  these early flowering plants are at greater risk of frosts.  It may also be that their pollinating agents may not be around - unless they too have brought forward their development / life cycle. There is some evidence that such changes are taking place.  Recent work at Wytham Wood (outside Oxford) has shown that blue tits have moved forward their egg laying to 'match' the development of the oak canopy, and the appearance of caterpillars (on which the young are fed).  Essentially, the timing of the food chain has changed..  Hopefully, such changes will occur in different ecosystems across the country.
Light in the darkness

Light in the darkness

by The blog at woodlands.co.uk, 8 February, 2022, 0 comments

Compared to past centuries, we live in a bright, highly illuminated world where even our nights are bright.  Apart from the lights in our homes and offices, there are thousands of street lights. In many places, the natural 'night time' environment is no more.  This 'artificial light' pollution  has increased significantly in recent times (as indicated by research led by the University of Exeter).    Street lights, especially the newer LED ones, may be affecting various night flying insects.   It is a fact that insect populations in general are under threat from  The loss of woodlands, forests, heathlands and meadows (often to agriculture) The intensive use of pesticides Climate change / extreme weather events Pollution of rivers / lakes (eg. Nitrate / phosphate pollution leading to eutrophication). Now the intensive use of artificial light is thought to be affecting night flying insects, such as moths. Moth populations are in decline, for example, the Buff Arches population, has declined in number by 62% since the 1970s. However, the effects are not limited to moths but also birds, bats and wildlife that feed upon them (or their caterpillars). The UK Centre for Ecology and Hydrology suggests that streets bathed in light may:- Deter nocturnal moths from egg laying. Make the night flying moths ‘easier targets’ for predators (such as bats). Affect the feeding habits of moth caterpillars. A number of investigations have been initiated by CEH, Newcastle University and Butterfly Conservation. The work involved surveys of grassland and hedgerows in southern England (Thames Valley) some lit by streetlamp, others unlit.  The areas that were exposed to night time lights had roughly half the number of caterpillars as compared to the unlit areas; (the hedgerows reduction was 47%, and 33% in grass margins).  In another investigation, LED lighting was set up in fields, caterpillars numbers in such fields were reduced.  It would seem that night time light affects the feeding behaviour of caterpillars. Quite how and why is to be determined. LED lights are being using more and more, as they are brighter, cheaper to run and more energy efficient. LEDs emit more blue light than older forms of lighting. It is likely that the impacts of light pollution on night flying insects will increase. This, in turn, will effect of other species, such as hedgehogs which need many, many caterpillars to feed themselves and their young.  The loss of insects, such as bees, ants and beetles is occurring at a worrying rate, indeed faster than the loss of mammalian, avian or reptilian species.  The loss of insects has far reaching consequences for ecosystems - as they provide food for many vertebrate species and they acts as pollinating agents for many flowers and crops.   https://youtu.be/Rnsz7JtBmJw

Next Page »